Dengan metode eliminasi, tentukan nilai x yang memenuhi SPLDV dari :
[tex] \frac{x - y}{3} = \frac{y - 1}{4} \: dan \: \frac{4x - 5y}{7} = x - 7[/tex]
Tolong pakai cara ya kak, trims><
[tex] \frac{x - y}{3} = \frac{y - 1}{4} \: dan \: \frac{4x - 5y}{7} = x - 7[/tex]
Tolong pakai cara ya kak, trims><
[tex] \frac{x - y}{3} = \frac{y - 1}{4} \\ 4(x - y) = 3(y - 1) \\ 4x - 4y = 3y - 3 \\ 4x - 4y - 3y = - 3 \\ 4x - 7y = - 3[/tex]
[tex] \frac{4x - 5y}{7} = x - 7 \\ 4x - 5y = 7(x - 7) \\ 4x - 5y = 7x - 49 \\ 4x - 7x - 5y = - 49 \\ - 3x - 5y = - 49[/tex]
4x - 7y = -3 |×5
-3x - 5y = -49 |×7
20x - 35y = -15
-21x - 35y = -343 _
41x = 328
x = 8
[answer.2.content]